New construction of 3nj-symbols

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1993 J. Phys. A: Math. Gen. 264339
(http://iopscience.iop.org/0305-4470/26/17/039)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 19:32

Please note that terms and conditions apply.

New construction of $\mathbf{3 n j}$-symbols

Ya I Granovskii \dagger and A S Zhednov
Physics Department, Donetsk University, Donetsk 340055, Ukraine

Received 23rd November 1992, in Gnal form 27 April 1993
A tribute to the memory of Professor Ya Smorodinski

Abstract

Polynomials, reducing the wavefunction of coupled momenta to products of single ones, are introduced and discussed. Composition of N such polynomials serves as a generating function for $3 n j$-coefficients of vector addition. For $\operatorname{SU}(1,1)$ the polynomials are calculated explicitly and a compact integral representation for $9 j$-coefficients is obtained as an example. The method is rather general and may be applied to other groups and to higher vector addition coefficients.

The vector addition coefficients ($3 n j$-symbols) are defined as unitary matrices transforming wavefunctions from one addition scheme to another. For example, addition of three momenta yields the Racah decomposition

$$
\left|k_{1} k_{2}\left(k_{12}\right) k_{3} ; K\right\rangle=\sum_{k_{23}}\left|k_{1} k_{2} k_{3}\left(k_{23}\right) ; K\right\rangle\left\{\begin{array}{lll}
k_{1} & k_{2} & k_{12} \tag{1}\\
k_{3} & K & k_{23}
\end{array}\right\} .
$$

The main difficulty consists in explicit construction of the wavefunctions corresponding to the given addition scheme. In the commonly accepted way the left-hand and right-hand sides of (1) are expressed via series involving Clebsch-Gordon coefficients $[1,2]$, leading to cumbersome expressions for $6 j \mathrm{~s}$. Another approach, dealing with the so-called Wigner-Racah algebra [3] is also too awkward.

We propose to use a representation $\langle x \mid n k\rangle$ for the wavefunction, where $|n k\rangle$ is a standard basis, i.e. eigenfunction of J_{0} and Casimir operator J^{2}

$$
\begin{equation*}
J_{0}|n k\rangle=(n+k)|n k\rangle, \quad J^{2}|n k\rangle=k(k-1)|n k\rangle \tag{2}
\end{equation*}
$$

and $|x\rangle$ is an eigenstate of the operator

$$
x=\sum_{i} c_{i} J_{i} .
$$

The method proposed is based on the following procedure [5]. As a first step let us factorize $\langle x \mid n k\rangle$ into so-called 'vacuum' amplitude $\langle x \mid 0 k\rangle$ and remainder $Q_{n}(x ; k)$

$$
\begin{equation*}
\left(x|n k\rangle=\langle x \mid 0 k\rangle Q_{n}(x ; k)\right. \tag{3}
\end{equation*}
$$

which appears to be a classical orthogonal polynomial [4-6].
\dagger Present address: Physics Department, Pedagogical University, 76-200 Slupsk, Poland

The second step consists in extension of this factorization property to a wavefunction of two particles

$$
\begin{equation*}
\langle x y \mid N K\rangle=\langle x y \mid 0 K\rangle Q_{N}(x+y ; K) \tag{4}
\end{equation*}
$$

Here $|x, y\rangle=|x\rangle \otimes|y\rangle$ is an unconnected basis and $|N K\rangle$ is a connected basis in the space of the direct product of two algebras.

The third step is Clebsch-Gordan decomposition of the two-point 'vacuum' amplitude

$$
\begin{equation*}
\langle x y \mid 0 K\rangle=\left\langle x \mid 0 k_{1}\right\rangle\left\langle y \mid 0 k_{2}\right\rangle S\left(x, y ; k_{1} k_{2} K\right) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
S\left(x, y ; k_{1} k_{2} K\right)=\sum_{m, n}\left\langle 0 K \mid m k_{1}, n k_{2}\right\rangle Q_{m}\left(x ; k_{1}\right) Q_{n}\left(y ; k_{2}\right) \quad m+n=K-k_{1}-k_{2} \tag{6}
\end{equation*}
$$

which appears to be a quite definite polynomial determined by the group that is considered.

Taking all this together, we construct the 'vacuum' amplitude for three added momenta in the form

$$
\begin{equation*}
\langle x y z \mid 0 K\rangle^{(12.3)}=S\left(x, y ; k_{1} k_{2} k_{12}\right) S\left(x+y, z ; k_{12} k_{3} K\right) \prod_{i=1}^{3}\left\langle x_{i} \mid 0 k_{i}\right\rangle \tag{7}
\end{equation*}
$$

corresponding to $\left(k_{1} \oplus k_{2}\right) \oplus k_{3}$ addition (here $x_{1}=x, x_{2}=y, x_{3}=z$).
Another possible way of addition $k_{1} \oplus\left(k_{2} \oplus k_{3}\right)$ leads to an analogous but different expression

$$
\begin{equation*}
\langle x y z \mid 0 K\rangle^{(1.23)}=S\left(y, z ; k_{2} k_{3} k_{23}\right) S\left(x, y+z ; k_{1} k_{23} K\right) \prod_{i=1}^{3}\left\langle x_{i} \mid 0 k_{i}\right\rangle . \tag{8}
\end{equation*}
$$

Connecting (7) and (8) with the help of (1) we obtain
$S\left(x, y ; k_{1} k_{2} k_{12}\right) S\left(x+y, z ; k_{12} k_{3} K\right)$

$$
=\sum_{k_{23}} S\left(y, z ; k_{2} k_{3} k_{23}\right) S\left(x, y+z ; k_{1} k_{23} K\right)\left\{\begin{array}{lll}
k_{1} & k_{2} & k_{12} \tag{9}\\
k_{3} & K & k_{23}
\end{array}\right\}
$$

The essential part of this construction is a S-function-a homogeneous polynomial of order $p=K-k_{1}-k_{2}$ in arguments x, y. Equation (9) is then a correlation property between products of such polynomials. The absence of any transcendent factor results in considerable simplification.

So far we have not specified the algebra underlying the addition procedure-this may be one of Lie algebras $\operatorname{SU}(2), S U(1,1), W(2)$ (Heisenberg-Weyl or oscillator algebra)-that have three generators.

Let us choose for demonstration the $\operatorname{SU}(1,1)$ algebra, leading to a more simple shape of S-function. We restrict ourself to representations of discrete positive series and take $X=2 J_{0}-J_{+}-J_{-}$. These choices give Laguerre polynomials for $Q_{n}(x ; k)$ and Jacobi polynomials for $S\left(x, y ; k_{1} k_{2} K\right)$ (details of calculations are given in the appendix).

$$
\begin{align*}
& S\left(x, y ; k_{1} k_{2} K\right)=x_{2}^{p} F_{1}\left(-p, 1-2 k_{1}-p ; 2 k_{2} \mid-y / x\right) \sigma\left(k_{1} k_{2} K\right) \\
& p=K-k_{1}-k_{2}=0,1,2 \ldots \tag{10}
\end{align*}
$$

Being a polynomial identity, equation (9) is valid for any value of the arguments x, y, z, so giving them particular values, we may deduce from (9) a wide class of useful formulae.

Thus, putting $x=1, y=-z$ we get a simple generating function for $6 j$-symbols

$$
\begin{align*}
{ }_{2} F_{1}\left(k_{1}+k_{2}\right. & \left.-k_{12}, 1-k_{1}+k_{2}-k_{12} ; 2 k_{2} \mid z\right)_{2} F_{1}\left(k_{12}+k_{3}-K, K+k_{12}+k_{3}-1 ; 2 k_{3} \mid z\right) \\
& =\sum_{n=0}^{N} G_{n} Z^{n}\left\{\begin{array}{ccc}
k_{1} & k_{2} & k_{12} \\
k_{3} & K & k_{2}+k_{3}+n
\end{array}\right\} \tag{11}
\end{align*}
$$

where

$$
\begin{aligned}
& G_{n}=(-1)^{n} \frac{\left(2 k_{2}+2 k_{3}+n-1\right)_{n} \sigma\left(k_{2} k_{3} k_{23}\right) \sigma\left(k_{1} k_{23} K\right)}{\left(2 k_{3}\right)_{n} \sigma\left(k_{1} k_{2} k_{12}\right) \sigma\left(k_{12} k_{3} K\right)} \\
& N=K-k_{1}-k_{2}-k_{3}=0,1,2, \ldots
\end{aligned}
$$

As a consequence we can immediately obtain from (11) the explicit expression for $6 j-$ symbols in terms of the generalized hypergeometric function ${ }_{4} F_{3}(1)$. It is instructive to compare this method of derivation with the traditional one [3].

The method may be applied without complications to addition of four (and more) momenta. The addition scheme $\left(k_{1} \oplus k_{2}\right) \oplus\left(k_{3} \oplus k_{4}\right)$ yields the following factorization of four-momenta 'vacuum' amplitude
$\langle x y z u \mid 0 K\rangle^{(12,34)}=S\left(x, y ; k_{1} k_{2} k_{12}\right) S\left(z, u ; k_{4} k_{4} k_{12}\right)$

$$
\begin{equation*}
\times S\left(x+y, z+u ; k_{12} k_{34} K\right) \prod_{i=1}^{4}\left\langle x_{i} \mid 0 k_{i}\right\rangle \tag{12}
\end{equation*}
$$

Another addition scheme $\left(k_{1} \oplus k_{3}\right) \oplus\left(k_{2} \oplus k_{4}\right)$ yields the factorization $\langle x y z u \mid 0 K\rangle^{(13.24)}=S\left(x, z ; k_{1} k_{3} k_{13}\right)$

$$
\begin{equation*}
\times S\left(y, u ; k_{2} k_{4} k_{24}\right) S\left(x+z, y+u ; k_{13} k_{24} K\right) \prod_{i=1}^{4}\left\langle x_{i} \mid 0 k_{i}\right\rangle \tag{13}
\end{equation*}
$$

Coupling (12) and (13) by means of $9 j$-symbols gives the identity for ternary products of Jacobi polynomials

$$
\begin{align*}
& S\left(x, y ; k_{1} k_{2} k_{12}\right) S\left(z, u ; k_{3} k_{4} k_{34}\right) S\left(x+y, z+u ; k_{12} k_{34} K\right) \\
& \quad=\sum_{k_{13} \cdot k_{24}} S\left(x, z ; k_{1} k_{3} k_{13}\right) S\left(y, u ; k_{2} k_{4} k_{24}\right) S\left(x+z, y+u ; k_{13} k_{24} K\right)\{9 j\} \tag{14}
\end{align*}
$$

where

$$
\{9 j\}=\left\{\begin{array}{ccc}
k_{1} & k_{3} & k_{13} \tag{15}\\
k_{2} & k_{4} & k_{24} \\
k_{\mathrm{t} 2} & k_{34} & K
\end{array}\right\}
$$

is a concise notation for $9 j$-symbol.
Among numerous applications of this relation we would like to note the new integral representation of $9 j$-symbols. It is obtained by setting $x+y=-(z+u)$ and
then using the orthogonality of Jacobi polynomials to get rid of them from the righthand side of (14). After simple manipulation we obtain

$$
\begin{align*}
& \left\{\begin{array}{l}
k_{1} k_{3} k_{1}+k_{3}+m \\
k_{2} k_{4} k_{2}+k_{4}+n \\
k_{12} k_{34}
\end{array}\right\}=C \int_{-1}^{1} \mathrm{~d} v \int_{-1}^{1} \mathrm{~d} w(v-w)^{N}(1-v)^{a_{1}}(1-w)^{\alpha_{2}}(1+v)^{\alpha_{3}}(1+w)^{a_{4}} \tag{16}\\
& P^{\left(\alpha_{1}, a_{2}\right)}\left(\frac{2-v-w}{v-w}\right) P_{q}^{\left(\alpha_{3}, a_{4}\right)}\left(\frac{2+v+w}{w-v}\right) P_{m}^{\left(a_{1}, \alpha_{3}\right)}(v) P_{n}^{\left(a_{2}, a_{4}\right)}(w)
\end{align*}
$$

where
$N=K-\sum_{i=1}^{4} k_{i} \quad p=k_{12}-k_{1}-k_{2} \quad q=k_{34}-k_{3}-k_{4} \quad \alpha_{i}=2 k_{i}-1$
and an expression for constant C is given in the appendix.
The integral representation (16) is perhaps the simplest among those known (compare, for example, with [8]).

By means of this method the reader may obtain the formulae for $12 j$-symbols and their triple-integral representation.

In conclusion let us underline that the simplicity of the relations obtained here is tightly bounded with the choice of x-representation (and the explicit form of the operator X) and factorizing the 'vacuum' amplitudes out. Evidently, it turns out to be possible owing to independence of $6 j$-, $9 j$ - etc. on the quantum numbers n summed up in S-function.

The late Professor Ya Smorodinskii, a known expert in the field, wrote some years ago ' $9 j$-that is a true goal to think about'. We would like to hope that equation (14) fulfills all his great demands.

Appendix

Taking the matrix element $\langle x| 2 J_{0}-J_{+}-J_{-}|n k\rangle$, we obtain the relation for Q-polynomials, defined in (3)

$$
\begin{equation*}
x Q_{n}(x ; k)=2(n+k) Q_{n}(x ; k)-a_{n+1} Q_{n+1}(x ; k)-a_{n} Q_{n-1}(x ; k) \tag{A1}
\end{equation*}
$$

For the algebra $S U(1,1)$ from its commutation relations

$$
\begin{equation*}
\left[J_{0}, J_{ \pm}\right]= \pm J_{ \pm} \quad\left[J_{-}, J_{+}\right]=2 J_{0} \tag{A2}
\end{equation*}
$$

the coefficients

$$
\begin{equation*}
a_{n}=\langle n-1, k| J_{-}|n k\rangle=\sqrt{n(n+\alpha)} \quad \alpha=2 k-1, n=0,1,2 \ldots \tag{A3}
\end{equation*}
$$

are obtained.
Inserting these coefficients into (A1) and comparing the resulting expression with the recurrence relation for Laguerre polynomials [7] we conclude that

$$
\begin{equation*}
Q_{n}(x ; k)=\left[n!/(\alpha+1)_{n}\right]^{1 / 2} L_{n}^{a}(x) \tag{A4}
\end{equation*}
$$

Returning to the calculation of $S\left(x, y ; k_{1} k_{2} K\right)$ via the formula (6), we use the expression for the Clebsch-Gordan coefficient

$$
\begin{equation*}
\left\langle 0 K \mid m k_{1}, n k_{2}\right\rangle=\frac{D_{p}(-1)^{m}}{\left[m!n!\left(2 k_{1}\right)_{m}\left(2 k_{2}\right)_{n}\right]^{1 / 2}} \tag{A5}
\end{equation*}
$$

where the normalization factor D_{p} is equal to

$$
\begin{align*}
& D_{p}=\left[p!\frac{\left(2 k_{1}\right)_{p}\left(2 k_{2}\right)_{p}}{\left(k_{1}+k_{2}+K-1\right)_{p}}\right]^{1 / 2} \quad p=K-k_{1}-k_{2} \\
& (a)_{n}=a(a+1) \ldots(a+n-1) \tag{A6}
\end{align*}
$$

From (6) and (A4) one obtains

$$
\begin{equation*}
S\left(x, y ; k_{1} k_{2} K\right)=D_{p} \sum_{m+n=p}(-1)^{m} \frac{L_{m}^{\alpha_{1}}(x) L_{n}^{\alpha_{2}}(y)}{\left(\alpha_{1}+1\right)_{m}\left(\alpha_{2}+1\right)_{n}} \tag{A7}
\end{equation*}
$$

Substituting the series expansion for $L_{m}^{(a 1)}, L_{n}^{(\alpha 2)}[7]$ and taking sums over m and n, we arrive at the one-fold sum that is reduced to a Gauss hypergeometric function

$$
\begin{equation*}
S\left(x, y ; k_{1} k_{2} K\right)=x_{2}^{p} F_{1}\left(-p, 1-2 k_{1}-p ; 2 k_{2} \mid-y / x\right) \sigma\left(k_{1} k_{2} K\right) \tag{A8}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma\left(k_{1} k_{2} K\right)=\left[\frac{\left(2 k_{2}\right)_{p}}{p!\left(2 k_{1}\right)_{p}\left(k_{1}+k_{2}+K-1\right)_{p}}\right]^{1 / 2} \tag{A9}
\end{equation*}
$$

which is just formula (10).
In the main text we used the following properties of the S-function

$$
\begin{align*}
& S\left(x, y ; k_{1} k_{2} K\right)=(-1)^{p} S\left(y, x ; k_{2} k_{1} K\right) \\
& S\left(x, 0 ; k_{1} k_{2} K\right)=x^{p} \sigma\left(k_{1} k_{2} K\right) \tag{A10}\\
& S\left(x,-x ; k_{1} k_{2} K\right)=x^{p} A\left(k_{1} k_{2} K\right) \\
& S\left(x, y ; k_{1} k_{2} K\right)=(x+y)^{p} P_{p}^{\left(\alpha_{1}, \alpha_{2}\right)}\left(\frac{y-x}{y+x}\right) B\left(k_{1} k_{2} K\right)
\end{align*}
$$

where $P_{p}^{(\alpha, \beta)}$ are standard Jacobi polynomials [7]. The normalization constants A and B are given as

$$
\begin{align*}
& A\left(k_{1} k_{2} k_{12}\right)=\left[\frac{\left(2 k_{1}+2 k_{2}+p-1\right)_{p}}{p!\left(2 k_{1}\right)_{p}\left(2 k_{2}\right)_{p}}\right]^{1 / 2} \\
& B\left(k_{1} k_{2} k_{12}\right)=(-1)^{p} \frac{p!A\left(k_{1} k_{2} k_{12}\right)}{\left(2 k_{1}+2 k_{2}+p-1\right)_{p}} \tag{A11}
\end{align*}
$$

Finally constant C in (16) is

$$
\begin{equation*}
C=(-1)^{n+q} \frac{A\left(k_{12} k_{34} K\right) B\left(k_{1} k_{2} k_{12}\right) B\left(k_{3} k_{4} k_{34}\right)}{A\left(k_{13} k_{24} K\right) B\left(k_{2} k_{4} k_{24}\right) h_{m}\left(\alpha_{1}, \alpha_{3}\right) h_{n}\left(\alpha_{2}, \alpha_{4}\right)} \tag{A12}
\end{equation*}
$$

and $h_{n}^{(\alpha, \beta)}$ are normalization constants for Jacobi polynomials.

References

[1] Landau L D and Lifshitz E M 1989 Quantum Mechanics (Moscow; Nauka)
[2] Smorodinski Ya A and Shelepin L A 1972 Usp. Fiz. Nauk. 106 3-45 (in Russian)
[3] Biedenharn L C and Louck J D 1981 Angular Momentum in Quantum Physics (Reading, MA: Addison-Wesley)
[4] Bacry H 1990 J. Math. Phys. 31 2061-77
[5] Granovskii Ya I and Zhedanov A S 1986 Izvestiya Vuzov, Fizika 5 60-66 (in Russian)
[6] Feinsilver P 1988 Acta Appl. Math. 13 291-333
[7] Erdelyi A 1953 Higher Transcendental Functions vol 2 (New York: McGraw-Hill)
[8] Varshalovich D A, Moskalev A N and Khersonskii V K 1975 Quantum Theory of Angular Momentum (Leningrad: Nauka)

