
New construction of 3nj-symbols

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 4339

(http://iopscience.iop.org/0305-4470/26/17/039)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 19:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A: Math. Gen. 26 (1993) 4339-4344. Printed in the UK 

New construction of 3nj-symbols 

Ya I Granovskiit and A S Zhednov 
Physics Department, Donetsk University, Donetsk 340055, Ukraine 
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A tribute to the memory of Professor Ya Smorodinski 

Abstract. Polynomials, reducing the wavefunction of coupled momenta to products of 
single ones, are introduced and discussed. Composition of N such polynomials serves as a 
generating function for 3nj-coefficients of vector addition. For SU(1,l) the polynomials 
are calculated explicitly and a compact integral representation for 9j-coefficients is 
obtained as an example. The method is rather general and may be applied to other groups 
and to higher vector addition coefficients. 

The vector addition coefficients (3nj-symbols) are defined as unitary matrices trans- 
forming wavefunctions from one addition scheme to another. For example, addition 
of three momenta yields the Racah decomposition 

The main difficulty consists in explicit construction of the wavefunctions corre- 
sponding to the given addition scheme. In the commonly accepted way the left-hand 
and right-hand sides of (1) are expressed via series involving Clebsch-Gordon 
coefficients [l, 21, leading to cumbersome expressions for 6js. Another approach, 
dealing with the so-called Wigner-Racah algebra [3] is also too awkward. 

We propose to use a representation (xlnk) for the wavefunction, where Ink) is a 
standard basis, i.e. eigenfundion of Jo and Casimir operator J2 

Jolnk)=(n+k)lnk), Pink) = k(k - 1) Ink) (2) 
and Ix) is an eigenstate of the operator 

The method proposed is based on the following procedure [5].  As a first step let us 
factorize (xlnk) into so-called ‘vacuum’ amplitude (xlOk) and remainder Q,(x; k) 

(xInk)=CxlOk)Q,(x; k )  (3) 
which appears to be a classical orthogonal polynomial [4-61. 
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The second step consists in extension of this factorization property to a wavefunc- 
tion of two particles 

Here Ix,y) = Ix)@ Iy) is an unconnected basis and INK)  is a connected basis in the 
space of the direct product of two algebras. 

The third step is Clebsch-Gordan decomposition of the two-point 'vacuum' 
amplitude 

( ~ y l  N K )  = ( x ~ ~ O K ) Q &  + Y ;  K) . (4) 

C ~ Y  I O W  (x IOki ) (Y  IOk,)S(x, Y ;  ki k2K) (5) 
where 

S(x,  Y ;  k i M ) =  (OKlmki, nk2)Qm(x; ki)Q.(y; k2) m + n = K - k l - k 2  (6 )  

which appears to be a quite definite polynomial determined by the group that is 
considered. 

Taking all this together, we construct the 'vacuum' amplitude for three added 
momenta in the form 

m.n 

(xy~ lOK) '" .~ ) '=S(x , y ;  klk2kc)S(x+y,  z ;  kiZk3K) (x;lOk,) (7) 
i= I 

corresponding to ( k l @ k z ) @ k 3  addition (here xI =x ,  x 2 = y ,  x3 =z). 

expression 
Another possible way of addition k l @ ( k 2 @ k 3 )  leads to an analogous but different 

Connecting (7) and (8) with the help of (1) we obtain 

S(x ,~ ;k ik2k i i )S (x+~ ,~ ;k12k~K)  

The essential part of this construction is a S-function-a homogeneous polynomial 
of order p = K- k ,  - k2 in arguments x ,  y .  Equation (9) is then a correlation property 
between products of such polynomials. The absence of any transcendent factor results 
in considerable simplification. 

So far we have not specified the algebra underlying the addition procedure-this 
may be one of Lie algebras SU(2), SU(1, I.), W ( 2 )  (Heisenberg-Weyl or oscillator 
algebra)-that have three generators. 

Let us choose for demonstration the SU(1,l) algebra, leading to a more simple 
shape of S-function. We restrict ourself to representations of discrete positive series 
and take X = U , - J +  - J - .  These choices give Lagueme polynomials for Q,(x; k )  
and Jacobi polynomials for S(x, y ;  k lk2K)  (details of calculations are given in the 
appendix). 

S(X,Y;  kik2K) =x!F,( -p ,  1 - 2 k i - p ;  2 k z l - ~ l x ) ~ ( k i k 2 K )  

p = K - k l - k 2 = 0 ,  1 , 2 . .  . (10) 
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Being a polynomial identity, equation (9) is valid for any value of the arguments x ,  
y ,  z, so giving them particular values, we may deduce from (9) a wide class of useful 
formulae. 

Thus, putting x =  1 ,  y =  -2 we get a simple generating function for 6j-symbols 

zFl(kl+kZ-k,z, l -k l+kz-k lz ;2k21~)zFI(kIZ+k3-K,  K+k12+k3-1;2k ,J~)  

where 

(Zk, + 2k3+ n - l ) , o ( k ~ k & ~ ) a ( k ~ k ~ K )  
(2k3 )na(kik&n )dkizk&) 

G.=(- l )”  

N = K - k t - k , - k i = O ,  1,2 , .  . . 
As a consequence we can immediately obtain from ( 1 1 )  the explicit expression for 6j- 
symbols in terms of the generalized hypergeometric function 4F3( l ) .  It is instructive to 
compare this method of derivation with the traditional one [3]. 

The method may be applied without complications to addition of four (and more) 
momenta. The addition scheme (k l@k2)@(k3@k4)  yields the following factorization .~ 
of four-momenta ‘vacuum’ amplitude 

( ~ Y Z U ~ O K ) ~ ” ~ ’ ~ ’ = S ( X ,  y ;  kikzkiz)S(Z, U; k4kklZ) 
4 

x S(x + y ,  z + U ;  klZkYIK) (xilOki). 
i = 1  

Another addition scheme (k l@ k3)@(k2€3k4) yields the factorization 

( x ~ z u I O K ) “ ~ . ~ ’ = S ( X ,  z ;  klk3k13) 

is a concise notation for 9j-symbol. 
Among numerous applications of this relation we would like to note the new 

integral representation of 9j-symbols. It is obtained by setting x ty= - ( z + u )  and 
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then using the orthogonality of Jacobi polynomials to get rid of them from the right- 
hand side of (14).  After simple manipulation we obtain 

{ ;;zk; k,+$+n 1 = C I I ,  d u l  dw(u- ~ ) ~ ( 1 -  v)"l(l -wF (1 + u)"1(1 t w)"' 

Ya 1 Granouskii and A N Zhedanou 

kl k ,  k , i k , + m  I 

- 1  

(16) 
p(o , ,az ) (  2 - U - w  )pP;.*,>( 2 + u + w  ) p ~ m ~ ( v ) p ~ ~ ~ ) ~ w , ~  

U- W W - U  

where 

N = K - x k ;  p=k12-kl-kZ q= k r -  ks- k4 a ,=2ki -1  (17) 

and an expression for constant C is given in the appendix. 
The integral representation (16) is perhaps the simplest among those known 

(compare, for example, with [SI). 
By means of this method the reader may obtain the formulae for 12j-symbols and 

their triple-integral representation. 
In conclusion let us underline that the simplicity of the relations obtained here is 

tightly bounded with the choice of x-representation (and the explicit form of the 
operator X) and factorizing the 'vacuum' amplitudes out. Evidently, it turns out to be 
possible owing to independence of 6j-, 9j- etc. on the quantum numbers n summed up 
in S-hnction. 

The late Professor Ya Smorodinskii, a known expert in the field, wrote some years 
ago '9j-that is a true goal to think about'. We would like to hope that equation (14) 
fulfills all his great demands. 

I 

i=1 

Appendix 

Taking the matrix element (xlU,-J,  -J-Ink), we obtain the relation for 
Q-polynomials, defined in (3)  

xQ&; k)=2(n+k)Qa(x;  k)-aa+IQn+lb;  k)-a,Q,-,(x; k) .  (AI) 

[ J o , J * I = + J *  [J-, J +  I = U0 ('42) 

For the algebra SU(1,I) from its commutation relations 

the coefficients 

a,=(n- l ,k lJ- lnk)=-  a = 2 k - l , n = O , 1 , 2 . .  . (A3)  

Inserting these coefficients into (Al) and comparing the resulting expression with 
are obtained. 

the recurrence relation for Laguerre polynomials [7] we conclude that 

Q.(x; k )  = [n!/(a + 1),]1'2L~(x) (-44) 
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Returning to the calculation of S(x, y; k,k2K) via the formula (6), we use the 
expression for the Clebsch-Gordan coefficient 

where the normalization factor D, is equal to 

(a).=&+ 1) . . . ( a + n -  1). (-46) 
From (6) and (A4) one obtains 

Substituting the series expansion for L;", Lis) [7] and taking sums over m and n, we 
arrive at the one-fold sum that is reduced to a Gauss hypergeometric function 

S ( X , Y ;  klk2K)=Y:Fl(-p, 1 -2k l -p ;  2kl -y/x)~(kIk&) ('48) 
where 

which is just formula (10). 
In the main text we used the following properties of the S-function 

s ( x , ~ ; k i k z K ) = ( - l ) P S ( Y , x ;  k2kiK) 

S(x ,  0; k,k,K) 'XPU(klk2K) 

S(X,  -x; klk2K)=xPA(k1k2K) 

where P f , D )  are standard Jacobi polynomials [7]. The normalization constants A 
B are given as 

Finally constant C in (16) is 

and h f f l  are normalization constants for Jacobi polynomials. 
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